
Index

abstract data type (ADT), xiv, 8–12,
20–22, 51, 99–103, 140–147,
158, 171, 173, 206–208, 216,
218, 221, 227, 228, 292–297,
389, 394–395, 430, 446, 475,
476

abstraction, 11
accounting, 125, 134
Ackermann’s function, 226
activation record, see compiler,

activation record
aggregate type, 8
algorithm

definition of, 18–19
algorithm analysis, xiii, 4, 57–96, 235

amortized, see amortized analysis
asymptotic, 4, 57, 58, 67–73, 99,

481
empirical comparison, 57–58, 89,

237
for program statements, 74–79
multiple parameters, 83–84
running time measures, 59
space requirements, 58, 84–86

all-pairs shortest paths, 532–534, 551,
553

amortized analysis, 76, 119, 327, 481,
496–499, 502

approximation, 572
array

dynamic, 118, 502
implementation, 9, 22

artificial intelligence, 389
assert, xvii
asymptotic analysis, see algorithm

analysis, asymptotic
ATM machine, 7
average-case analysis, 63–65
AVL tree, 198, 365, 447, 453–456, 475

back of the envelope, napkin, see
estimating

backtracking, 571
bag, 26, 51
bank, 6–7
basic operation, 5, 6, 21, 22, 59, 61, 66
best fit, see memory management, best

fit
best-case analysis, 63–65
big-Oh notation, see O notation
bin packing, 572–573
binary search, see search, binary
binary search tree, see BST
binary tree, 153–205

BST, see BST
complete, 154, 155, 170, 171, 181,

257

591



592 INDEX

full, 154–157, 169, 170, 189, 198,
225

implementation, 153, 156, 198
node, 153, 157–158, 162–169
null pointers, 157
overhead, 169
parent pointer, 163
space requirements, 157, 163,

169–170
terminology, 153–155
threaded, 202
traversal, see traversal, binary tree

Binsort, 85, 86, 259–265, 268, 337, 557
bintree, 471, 476
birthday problem, 332, 353
block, 298, 303
Boolean expression, 565

clause, 565
Conjunctive Normal Form, 565
literal, 565

Boolean variable, 8, 30, 95
branch and bounds, 571
breadth-first search, 389, 401, 403, 404,

417
BST, xv, 171–180, 198, 200, 202, 230,

250, 256, 364–367, 369, 370,
375, 447, 452–459, 461, 470,
475, 476, 536, 541

efficiency, 179
insert, 175–176
remove, 176–179
search, 173–174
search tree property, 172
traversal, see traversal

B-tree, 318, 331, 358, 363, 372–382,
384, 473

analysis, 381

B+-tree, 8, 10, 359, 363, 375–381,
384, 385, 448

B∗-tree, 379
Bubble Sort, 80, 240–243, 266, 272
buffer pool, xv, 12, 279, 289–297,

314–316, 325, 326, 365, 374,
438

ADT, 292–297
replacement schemes, 290–291,

326–328

Java
generic, 101
new, 115
private members, 106

cache, 282, 289–297, 325
CD-ROM, 8, 9
CD-ROM, 281, 284, 332
ceiling function, 30
city database, 151, 202, 465, 476
class, 100, see object-oriented

programming, class
clique, 563, 568, 569, 571, 582
cluster problem, 230, 476
cluster, file, 285, 287, 288, 438
code tuning, 57–59, 87–90, 255–256
Collatz sequence, 72, 93, 94, 574, 581,

584
comparator, xiv, 16, 99
compiler, 89

activation record, 129
efficiency, 58
optimization, 89

complexity, 11
composite, see design pattern,

composite
composite type, 8
computability, 20, 574, 581
computer graphics, 448, 459



INDEX 593

connected component, see graph,
connected component

contradiction, proof by, see proof,
contradiction

cylinder, see disk drive, cylinder

data item, 8
data member, 9
data structure, 5, 9

costs and benefits, xiii, 3, 6–8
definition, 9
philosophy, 4–6
physical vs. logical form, xvi, 9,

12–13, 99, 181, 282, 293, 423
selecting, 5–6
spatial, see spatial data structure

data type, 9
decision problem, 561, 565, 566, 582
decision tree, 268–271
decomposition

image space, 448
key space, 448
object space, 447

delete, see C++, delete
depth-first search, 389, 400–402, 417,

442, 502
deque, 150
dequeue, see queue, dequeue
design pattern, xiv, 12–16, 21

composite, 15–16, 167, 471
flyweight, 13–14, 167, 202,

470–471
strategy, 16
visitor, 14–15, 161, 401

Deutsch-Schorr-Waite algorithm, 443,
446

dictionary, 173, 345–449
ADT, 140–146, 318, 356, 385, 529

Dijkstra’s algorithm, 408–412, 419,
420, 532, 533

Diminishing Increment Sort, see
Shellsort

directed acyclic graph (DAG), 391, 405,
419, 424, 442

discrete mathematics, xv, 49
disjoint set, see equivalence class
disk drive, 9, 279, 282–313

access cost, 286–288, 311
cylinder, 283, 363
organization, 282–286

disk processing, see file processing
divide and conquer, 250, 252, 255, 320,

487, 492–494
document retrieval, 330, 352
double buffering, 290, 302, 304
dynamic array, see array, dynamic
dynamic memory allocation, 106
dynamic programming, 571

efficiency, xiii, 3–5
80/20 rule, 325, 350
element, 25

homogeneity, 100, 119
implementation, 119–120

Emacs text editor, 441, 443
encapsulation, 9
enqueue, see queue, enqueue
entry-sequenced file, 357
enumeration, see traversal
equation, representation, 164
equivalence, 27–28

class, 27, 205, 210–216, 226–228,
230, 415, 416, 419, 421, 476

relation, 27, 50
estimating, 25, 47–50, 54, 55, 57–59,

68



594 INDEX

exact-match query, see search,
exact-match query

exponential growth rate, see growth
rate, exponential

expression tree, 163–169
extent, 285
external sorting, see sorting, external

factorial function, 29, 34, 37, 47, 51,
76, 85, 91, 131, 268, 271, 581

Stirling’s approximation, 29, 271
Fibonacci sequence, 34, 51–53, 96
FIFO list, 134
file manager, 282, 285, 288, 431, 432,

438
file processing, 86, 236, 310
file structure, 9, 282, 357, 382
first fit, see memory management, first

fit
floor function, 30
floppy disk drive, 280, 281, 284
Floyd’s algorithm, 532–534, 551, 553
flyweight, see design pattern, flyweight
fragmentation, 286, 288, 432, 437–439

external, 432
internal, 286, 432

free list, 151
free store, 115
free tree, 391, 411, 416
freelist, 125, 128
full binary tree theorem, 156–157, 169,

198, 224
function, mathematical, 17

garbage collection, 110
general tree, 205–230

ADT, 206–207, 227
converting to binary tree, 220, 221,

228

dynamic implementations, 228
implementation, 216–221
left-child/right-sibling, 218, 228
list of children, 217–218, 228, 391
parent pointer implementation,

208–216, 456
terminology, 205–206
traversal, see traversal

Geographic Information System, 8
geometric distribution, 325, 333, 538,

541
gigabyte, 29
graph, xv, 23, 389–421, 425

adjacency matrix, 427
adjacency list, 389, 391, 392, 398,

417
adjacency matrix, 389, 391, 392,

395–397, 416
ADT, 389, 394–395
connected component, 391, 421,

502
edge, 390
implementation, 389, 394–397
modeling of problems, 389, 397,

405, 407, 408, 411
representation, 391–394
terminology, 389–391
traversal, see traversal, graph
undirected, 390, 427
vertex, 390

greatest common divisor, see largest
common factor

greedy algorithm, 192, 413, 415
growth rate, 57, 60–63, 91

asymptotic, 67–68
constant, 60, 69
exponential, 61, 66, 67
linear, 61, 65–67, 86



INDEX 595

quadratic, 61, 65–67, 86, 87

halting problem, 573–580
Hamiltonian cycle, 582
handle, 439
Harmonic Series, 34, 325, 496
hashing, 7, 10, 31, 64, 318, 330–351,

357, 358, 372, 428, 473, 502
analysis of, 346–350
bucket, 338–339, 356
closed, 336–345, 354
collision resolution, 331, 337–345,

350, 352
deletion, 350–351, 355
double, 345, 354
dynamic, 352
hash function, 331–336, 354
home position, 337
insert, 339
linear probing, 339–342, 345, 349,

350, 354, 356
load factor, 346
open, 336–338
perfect, 331, 352
primary clustering, 342–345
probe function, 340–345
probe sequence, 339, 341–346,

348, 350, 351
pseudo-random probing, 343, 345
quadratic probing, 344, 345, 354
search, 340
table, 330
tombstone, 350

header node, 128, 137
heap, 153, 155, 171, 180–187, 189,

198, 200, 201, 203, 256–259,
277, 409, 416

building, 184–186
for memory management, 431

insert, 184
max-heap, 181
min-heap, 181, 304
partial ordering property, 181
remove, 187
siftdown, 185–187, 277

heapsort, 277
Heapsort, 181, 256–259, 266, 304
heuristic, 572–573
hidden obligations, see obligations,

hidden
Huffman coding tree, 153, 155, 163,

187–198, 201–204, 229, 448
prefix property, 196

independent set, 582
index, 12, 273, 357–385

file, 300, 358
inverted list, 361, 383
linear, 8, 359–361, 383, 384
tree, 358, 364–381

induction, 156–157, 185, 193–195, 198,
199, 228, 272, 416, 487, 488,
501

induction, proof by, see proof, induction
inheritance, 101, 104, 109, 146, 165,

166, 168, 170, see
object-oriented programming,
inheritance

inorder traversal, see traversal, inorder
input size, 59, 63
Insertion Sort, 80, 238–239, 241,

243–246, 256, 266, 268–270,
272, 274–276

integer representation, 5, 8–10, 21, 151
inversion, 239, 243
inverted list, see index, inverted list
ISAM, 358, 361–364, 383



596 INDEX

Java
generic, 13

Java
file access, 297–298
new, 114–122

Java, xv–xvii, 20, 21
inheritance, xvi

Java
new, 431

k-d tree, 459, 461–466, 471, 473, 476
K-ary tree, 221–223, 226, 228, 466
key, 140–142
kilobyte, 29
knapsack problem, 570–571, 584
Kruskal’s algorithm, xv, 259, 415–416,

419, 420

largest common factor, 52
latency, 285, 287, 288
least frequently used (LFU), 291, 314,

326
least recently used (LRU), 291, 314,

316, 326, 374
LIFO list, 125
linear growth, see growth rate, linear
linear index, see index, linear
linear search, see search, sequential
link, see list, link class
linked list, see list, linked
LISP, 49, 426, 440, 441, 443
list, 24, 99–153, 189, 358, 423, 425,

502
ADT, 10, 99–103, 147
append, 106, 121, 122
array-based, 9, 99, 103–106,

117–119, 125, 150
basic operations, 100
circular, 148

comparison of space requirements,
149

current position, 100, 101,
108–110, 113, 118

doubly linked, 120–125, 148, 151,
163

space, 124–125
element, 100, 119–120
freelist, 114–117, 431–442
head, 100, 106, 109
implementations compared,

117–119
initialization, 100, 104, 105
insert, 100, 106–110, 113, 118,

121–123, 153
link class, 106–107
linked, 9, 99, 103, 106–113,

117–119, 361, 423, 447, 536,
541

node, 106–109, 121
notation, 100
ordered by frequency, 324–329,

482
orthogonal, 428
remove, 100, 106, 110, 113, 114,

118, 121, 123, 124
search, 153, 318–329
self-organizing, xv, 65, 326–329,

350, 351, 353, 355, 456,
498–499

singly linked, 107, 120
sorted, 5, 100, 146
space requirements, 117–118, 148,

149
tail, 100
terminology, 100
unsorted, 100



INDEX 597

locality of reference, 285, 289, 349,
365, 372

logarithm, 31–32, 51
log∗, 216, 226

logical representation, see data
structure, physical vs. logical
form

lookup table, 85
lower bound, 57, 70–72, 348

sorting, 267–271, 556

map, 389, 407
matching, 572
matrix, 427–430

multiplication, 558, 559
sparse, xv, 9, 423, 427–430, 444
triangular, 427

megabyte, 29
member, see object-oriented

programming, member
member function, see object-oriented

programming, member
function

memory management, 12, 423,
430–443, 445

ADT, 430, 446
best fit, 435, 573
buddy method, 433, 436–437, 446
failure policy, 432, 438–443
first fit, 435, 572
garbage collection, 439–443
memory allocation, 430
memory pool, 430
sequential fit, 433–436, 445
worst fit, 436

Mergesort, 131, 246–249, 262, 266,
275, 487, 493, 494

external, 301–304

multiway merging, 307–310, 314,
316

metaphor, 11, 20
Microsoft Windows, 285, 311
millisecond, 29
minimum-cost spanning tree, 235, 259,

389, 411–416, 419, 420, 553
modulus function, 28, 30
move-to-front, 326–329, 353, 498–499
multilist, 26, 423–426, 444
multiway merging, see Mergesort,

multiway merging

nested parentheses, 23, 150
networks, 389, 408
new, see C++, new
NP-complete, see problem,

NP-complete
null pointer, 107

O notation, 68–73, 92
object-oriented programming, xvi, 9,

12–16, 21
class, 9
class hierarchy, 15–16, 163–169,

468–471
members and objects, 8, 9

obligations, hidden, 160, 296
octree, 471
Ω notation, 70–73, 92
one-way list, 107
operating system, 19, 180, 282, 285,

287, 289–291, 301, 304, 431,
438, 439, 443

operator overloading, see C++,
operator overloading

overhead, 84, 117–118
binary tree, 199
matrix, 429



598 INDEX

stack, 129

pairing, 555–557
palindrome, 149
partial order, 28, 50, 181

poset, 28
partition, 582
path compression, 215–216, 227, 228,

504
permutation, 30, 51, 52, 85, 86, 259,

268–271, 346
physical representation, see data

structure, physical vs. logical
form

Pigeonhole Principle, 53, 137
point quadtree, 471, 476
pop, see stack, pop
postorder traversal, see traversal,

postorder
powerset, see set, powerset
PR quadtree, 14, 163, 222, 459,

466–468, 471, 473, 474, 476
preorder traversal, see traversal,

preorder
prerequisite problem, 389
Prim’s algorithm, 412–415, 419, 420
primary index, 358
primary key, 358
priority queue, 153, 171, 189, 203, 409,

413
probabilistic data structure, 529,

536–541
problem, 6, 17, 19, 554

analysis of, 57, 79–80, 236,
267–271

hard, 559–573
impossible, 573–580
NP-complete, 560–573, 581

problem solving, 20

program, 3, 19
running time, 58–59

programming style, 20
proof

contradiction, 40–41, 53
direct, 40
induction, 34, 40–46, 49, 53

proof by contradiction, 413, 556, 578,
579

pseudo-polynomial time algorithm, 570
pseudocode, xvii, 19
push, see stack, push

quadratic growth, see growth rate,
quadratic

queue, 99, 107, 133–140, 149, 401,
404–406

array-based, 134–137
circular, 135–137, 149
dequeue, 134, 140
empty vs. full, 136–137
enqueue, 133, 135
implementations compared, 140
linked, 137, 139, 140
priority, see priority queue
terminology, 133

Quicksort, 131, 239, 249–257, 266,
273, 274, 276, 299, 301, 304,
352, 481

analysis, 495–496

Radix Sort, 260–266, 268, 276
RAM, 280, 281
Random, 30
range query, 358, see search, range

query
real-time applications, 64, 65
recurrence relation, 34–36, 53, 254,

481, 487–496, 499, 501



INDEX 599

divide and conquer, 492–494
estimating, 487–490
expanding, 491, 492, 501
solution, 36

recursion, xiv, 34–39, 41, 42, 51, 52,
76, 130, 159–161, 174, 175,
199, 202, 247, 249, 273, 275,
276, 442

implemented by stack, 129–133,
256

replaced by iteration, 51, 131
reduction, 268, 554–559, 579, 581, 583
relation, 27–29, 50
replacement selection, 181, 304–307,

309, 314, 316, 481
resource constraints, 5, 6, 17, 57, 58
run (in sorting), 301
run file, 301, 302
running-time equation, 60

satisfiability, 565–569, 571
searc

sequential, 22
search, 23, 87, 317–357

binary, 31, 77–79, 94–96, 272, 320,
352, 359, 360, 374, 493, 502

defined, 317
exact-match query, 7–8, 10, 317,

318, 357
in a dictionary, 320
interpolation, 320–323, 352
jump, 319–320
methods, 317
multi-dimensional, 459
range query, 8, 10, 317, 330, 357,

364
sequential, 59–60, 63–64, 69,

77–79, 94–96, 318–319, 328,
352, 496

sets, 329–330
successful, 317
unsuccessful, 317, 346

search trees, 64, 180, 358, 363, 365,
372, 452, 456, 459

secondary index, 358
secondary key, 358
secondary storage, 279–288, 311–313
sector, 283, 286, 288, 299
seek, 285, 286
Selection Sort, 241–243, 256, 266, 272
self-organizing lists, see list,

self-organizing
sequence, 27, 30, 51, 100, 318, 329,

359, 554, 555
sequential search, see search, sequential
sequential tree implementations,

223–226, 228, 229
serialization, 223
set, 25–29, 51, 330

powerset, 26, 29
search, 318, 329–330
subset, superset, 26
terminology, 25–26
union, intersection, difference, 26,

329, 353
Shellsort, 239, 244–246, 266, 274
shortest paths, 389, 407–411, 419
simulation, 89–90
skip list, xv
Skip List, 529, 536–541, 551, 552
slide rule, 32, 547
software engineering, xiii, 4, 20, 554
sorting, 18, 22–24, 59, 64, 65, 80, 83,

87, 235–277, 319, 328,
554–557

adaptive, 271



600 INDEX

comparing algorithms, 237,
265–267, 309, 310

exchange sorting, 243
external, 171, 236, 257, 279,

298–311, 314–316
lower bound, 236, 267–271
small data sets, 237, 255, 271, 275
stable algorithms, 236, 272, 273
terminology, 236–237

spatial data structure, 447, 459–473
splay tree, 180, 198, 365, 447, 453,

455–459, 473–476, 482, 536
stable sorting alorithms, see sorting,

stable algorithms
stack, 99, 107, 125–133, 149, 199, 202,

256, 272, 273, 276, 400–402,
497–498

array-based, 125–126
constructor, 125
implementations compared, 129
insert, 125
linked, 128, 129
pop, 125, 126, 128, 151
push, 125, 126, 128, 151
remove, 125
terminology, 125
top, 125–126, 128
two in one array, 129, 149
variable-size elements, 151

Strassen’s algorithm, 543, 552
strategy, see design pattern, strategy
subclass, see object-oriented

programming, class hierarchy
subset, see set, subset
suffix tree, 475
summation, 33–34, 42–44, 53, 54, 75,

76, 95, 180, 186, 254, 324,

325, 427, 481–486, 491,
493–497, 500

guess and test, 500
list of solutions, 33, 34
notation, 33
shifting method, 483–486, 495,

500
swap, 30

table, 318
tape drive, 282, 283, 298
template, see C++, template
text compression, 153, 187–198, 282,

328–329, 351, 355
Θ notation, 71–73, 94
topological sort, 389, 405–406, 418
total order, 29, 51, 181
Towers of Hanoi, 37–39, 131, 553, 559
tradeoff, xiv, 3, 13, 79, 286, 298

disk-based space/time principle,
86, 282, 349

space/time principle, 85–86, 101,
124, 187, 282, 349

transportation network, 389, 407
transpose, 327, 328, 353
traveling salesman, 561–563, 570–572,

582, 584
traversal

binary tree, 131, 153, 158–162,
167, 172, 180, 199, 397

enumeration, 158, 172, 223
general tree, 207–208, 227
graph, 389, 397–406

tree
height balanced, 371, 372, 374, 536
terminology, 153

trie, 163, 265, 447–452, 473, 475
alphabet, 449
binary, 448



INDEX 601

PATRICIA, 451–452, 473
tuple, 27
Turing machine, 566
two-coloring, 45
2-3 tree, 180, 358, 366–371, 374, 378,

383, 384, 452, 502, 536
type, 8

uncountability, 574–577
UNION/FIND, xv, 209, 416, 421, 482,

504
units of measure, 29, 49
UNIX, 250, 285, 311, 441
upper bound, 57, 68–72

variable-length record, 151, 359, 384,
423, 425, 430

sorting, 237
vector, 27
Vector, 118
vertex cover, 568, 571, 572, 582, 584
virtual function, 170
virtual memory, 291–293, 301, 314
visitor, see design pattern, visitor

weighted union rule, 214–215,
227–228, 504

worst fit, see memory management,
worst fit

worst-case analysis, 63–65, 68

Zipf distribution, 325, 333, 353
Ziv-Lempel coding, 329, 352


